Monatshefte für Chemie 111, 1359-1366 (1980)

Monatshefte für Chemie © by Springer-Verlag 1980

Bestimmung der thermodynamischen Exzeßgrößen im System PbCl₂—LiCl

Richard Vytlacil

Institut für technische Elektrochemie, Technische Universität Wien, A-1060 Wien, Austria

(Eingegangen 6. März 1980. Angenommen 27. März 1980)

Determination of the Thermodynamic Excess Functions in the System PbCl₂—LiCl

The emf of the formation cell

graphite/Pb(l)/PbCl₂(l)-LiCl(l)/Cl₂ graphite

was measured as a function of concentration and temperature in the range of $923\,\mathrm{K}$ to $1,\!173\,\mathrm{K}.$

The partial molar excess Gibbs energies of PbCl₂ derived therefrom were fitted according to the expression suggested by *Redlich-Kister* for the excess functions of binary systems non-linearly for the total concentration range and linearly over all temperatures.

By means of the resulting *Redlich-Kister* parameters the molar *Gibbs* free energies and the partial molar excess *Gibbs* energies for LiCl were calculated as well as the partial and integral molar heats of mixing and excess entropies. The system PbCl₂—LiCl shows only a slightly positive deviation from ideal behaviour over the total concentration range. The maximum value of $G^{\rm E}$ amounts to 560 J mol⁻¹ at 973 K.

(Keywords: EMF; Exzess functions; LiCl; PbCl₂; Salt melt; Thermodynamics)

Einleitung

Um einen Einblick in das thermodynamische Verhalten von Salzschmelzen zu erhalten, bieten sich neben kalorimetrischen Untersuchungen und der Berechnung der chemischen Potentiale über die entsprechenden Phasendiagramme in erster Linie EMK-Messungen an. Im Vergleich zur Ermittlung aus Schmelzdiagrammen zeichnet sich die Bestimmung der chemischen Potentiale mit Hilfe von EMK-Messungen durch die Möglichkeit aus, Zusammensetzung und Temperatur im untersuchten Schmelzsystem beliebig zu verändern. Die Konzentrations- und Temperaturabhängigkeit der chemischen Potentiale der R. Vytlacil:

Komponenten erlaubt außerdem einen Einblick in die interionischen Wechselwirkungen in der betrachteten Salzschmelze.

In der vorliegenden Arbeit wurde der gesamte Konzentrationsbereich des Systems Bleichlorid—Lithiumchlorid bei Temperaturen von 923 K bis 1,173 K untersucht. Messungen in diesem Schmelzsystem wurden bis jetzt nur bis 873 K durchgeführt. Der in dieser Arbeit gemessene höhere Temperaturbereich wurde hauptsächlich deshalb noch nicht ausreichend untersucht, da die Verwendung flüssiger Bleielektroden in der Bildungszelle

Graphit/Pb(l)/PbCl₂-LiCl/Cl₂ Graphit

in Verbindung mit der üblicherweise eingesetzten Chlor-Elektrode zu beträchtlichen technischen Schwierigkeiten führen. Wie schon in einer früheren Arbeit¹ gezeigt wurde, treten durch die Reaktion von Chlorgas mit dem bei höheren Temperaturen auftretenden Bleinebel in der Schmelze Konzentrationsänderungen an Bleichlorid ein.

Um diesen Effekt auszuschließen, wurde an Stelle einer flüssigen Bleielektrode ein Graphitstab verwendet, an dem vor jeder Messung coulometrisch kontrolliert einige Milligramm Blei abgeschieden wurde. Die Voraussetzung dafür sind Graphitelektroden, an denen sich in Gegenwart von Chlor keine Mischpotentiale zwischen einer Cl_2/Cl^{-} und einer Pb/Pb⁺²-Elektrode einstellen. Ein Material, welches diesen Anforderungen entspricht sind Spektralkohlen RWO der Fa. Ringsdorff. Weiters muß gefordert werden, daß das Potential innerhalb weniger Zehntel Millivolt so lange konstant bleibt, bis das abgeschiedene Blei praktisch vollständig in Lösung gegeangen ist.

Aus diesem Grunde wurde sowohl die Abscheidung von Blei auf Kohle, als auch die Auflösung in der chlorgasgesättigten Schmelze untersucht.

Um einen ersten Einblick in dieses System zu erhalten, wurden Cyclovoltagramme aufgenommen. Die in Abb. 1 dargestellte Kurve zeigt im kathodischen Ast bei etwa — 1300 mV/SCE (Standard Chlorelektrode) einen Reaktionsstrom, der der Abscheidung von Blei zugeordnet werden kann. Entsprechend der abgeschiedenen Menge an Blei und der Spannungsgeschwindigkeit ist im anodischen Teil der Kurve der Auflösungspeak von Blei zu sehen. Wird nach einem vollständigen Durchlauf das Cyclovoltagramm nur im Bereich der anodischen Auflösung aufgenommen, dann verschwindet nach etwa zwei bis drei Minuten der anodische Strompeak, ohne daß sich das Potential des Beginns der Auflösung ändert. Daraus kann geschlossen werden, daß das in flüssiger Form abgeschiedene Blei an der Elektrode ausreichend haftet und während der Auflösung praktisch keine Potentialänderung eintritt. Weiters ist zu beachten, daß die Potentialschwankungen der Chlorhalbzelle — um eine sinnvolle Auswertung der EMK vornehmen zu können — innerhalb von 0.3 mV liegen müssen. Wie schon in einer früheren Arbeit² beschrieben wurde, kann die üblicherweise verwendete Chlorgaselektrode, bei der durch den Austritt von Gasblasen immer periodische Potentialschwankungen auftreten durch Anlegen eines geringen, konstanten anodischen Stromes von $20 \,\mu\text{A}$ bis $50 \,\mu\text{A/cm}^2$ gegenüber einer koaxial angeordneten Hilfskathode stabilisiert werden.

Abb. 1. Dreieckspannungskurve an Graphit im System $PbCl_2$ --LiCl. Spannungsgeschwindigkeit 35 mV/s

Experimenteller Teil

Die experimentelle Anordnung ist bereits in einer früheren Arbeit² beschrieben worden.

Wird an der Graphitelektrode eine gemessene Menge Blei abgeschieden, so stellt sich das reversible Bleipotential Pb/Pb⁺² ein. Im stromlosen Zustand löst sich das abgeschiedene Blei in der chlorgasgesättigten Schmelze, wobei das Potential gegenüber der Chlorhalbzelle in Abhängigkeit von der Zeit verfolgt wird. Das Potential, welches über einen Zeitraum von 2 bis 3 min innerhalb der Meßgenauigkeit konstant ist, ändert sich, nachdem sich das abgeschiedene Blei vollständig aufgelöst hat, sprunghaft.

Die Spannungsdifferenz zwischen dem Potential der Bleielektrode am Ende des linearen Bereiches und der Chlorhalbzelle wurde als EMK des Systems in der jeweils untersuchten Schmelze angesehen.

Meßergebnisse

Über den gesamten Konzentrationsbereich und bei sechs Temperaturen zwischen 923 K und 1173 K in Intervallen von 50 K wurden die

⁸⁹ Monatshefte für Chemie, Vol. 111/6

R. Vytlacil:

reversiblen Zellspannungen E der Bildungszelle

Graphit/Pb(l)/PbCl₂-LiCl/Cl₂/Graphit

gemessen und daraus nach

$$G_{\text{PbCl}_2}^{\text{E}} = R T \ln f_{\text{PbCl}_2} = (E_0 - E) F - R T \ln x_{\text{PbCl}_2}$$
(1)

Tabelle 1. Experimentell ermittelte partielle molare freie Exzeßenthalpien $G_{PbCl}^{E}^{2}$ von $PbCl_{2}$ in J mol⁻¹

x_{PbCl_2}	<i>T</i> [K]					
	923	973	1023	1073	1123	1173
0,05	2384	2338	2290	2247	22 00	2155
0,1	2057	2007	1955	1906	1855	1805
0,2	1528	1477	1428	1376	1325	1275
0,25	1315	1267	1220	1172	1125	1080
0,3	1129	1086	1044	1002	957	915
0,4	824	793	760	730	698	665
0,5	586	566	545	526	506	485
0,55	486	471	456	442	427	415
0,6	395	384	375	364	350	350
0,7	240	236	230	230	225	220
0,8	117	115	117	115	116	115
0,85	70	70	68	70	70	70
0,9	30	35	35	30	35	35

die Aktivitätskoeffizienten bzw. die partiellen molaren freien Exzeßenthalpien von Bleichlorid bestimmt. Die aus mehreren Meßreihen ermittelten partiellen molaren freien Exzeßenthalpien sind in Tab. 1 zusammengestellt.

Kennt man die partielle Exzeßgröße der einen Komponente, so kann man über die *Gibbs-Duhem*sche Beziehung

$$G_2^{\rm E} = - \int_{x_2=1}^{x_2} \left(\frac{x_1}{x_2} \right) {\rm d} \, G_1^{\rm E} \tag{2}$$

durch numerische Integration die entsprechende Größe der zweiten Komponente berechnen. Praktisch gleiche Ergebnisse werden jedoch auch erhalten, wenn an Stelle des graphischen Ausgleichs und der nachfolgenden numerischen Integration ein analytisches Verfahren herangezogen wird. Für Zweistoffsysteme hat sich der von *Redlich* und *Kister*³ vorgeschlagene Ansatz

$$G^{\mathbf{E}} = x_1 x_2 \left[a + b \left(x_1 - x_2 \right) + c \left(x_1 - x_2 \right)^2 + \dots \right]$$
(3)

für die Bestimmung thermodynamischer Exzeßgrößen bewährt.

Mit Hilfe der Gleichungen

$$G_{1}^{\rm E} = G^{\rm E} - x_2 \frac{\partial G^{\rm E}}{\partial x_2} \text{ und } G_{2}^{\rm E} = G^{\rm E} - x_1 \frac{\partial G^{\rm E}}{\partial x_1}$$
(4, 5)

werden für die partiellen molaren freien Exzeßenthalpien der beiden Komponenten $PbCl_2(1)$ und LiCl(2) folgende Ausdrücke erhalten.

$$G_{\text{PbCl}}^{\text{E}} = x_2^2 [a + b (3x_1 - x_2) + c (x_1 - x_2) (5x_1 - x_2) + \dots]$$
(6)

$$G_{\text{LiCl}}^{\text{E}} = x_1^2 [a + b (x_1 - 3x_2) + c (x_1 - x_2) (x_1 - 5x_2) + \dots]$$
(7)

Analoge Beziehungen (3, 6 und 7) ergeben sich, sowohl für die integralen und partiellen molaren Mischungswärmen, als auch für die integralen und partiellen molaren Exzeßentropien.

	a ^(h, s)	b ^(h, s)	c ^(h, s)	
H_i^{E}	3734	10		
$S_i^{\rm E}$	1,5173	0,0845	$-0,\!6874$	

Unter der Annahme, daß im betrachteten Temperaturbereich die $c_p^{\rm E}$ -Werte vernachlässigbar sind, kann sowohl $H^{\rm E}$ als auch $S^{\rm E}$ als temperaturunabhängig angesehen werden. Somit besteht zwischen den Exzeßgrößen bzw. zwischen den entsprechenden *Redlich-Kister*-Parametern auf Grund der *Gibbs-Helmholtz*schen Beziehung folgender Zusammenhang

$$a = a^{(\mathrm{h})} - a^{(\mathrm{s})} T \tag{8}$$

Für das System PbCl₂—LiCl ergeben sich nach dem Ausgleich der ermittelten partiellen molaren freien Exzeßenthalpien von Bleichlorid über den gesamten Konzentrationsbereich und linear über alle untersuchten Temperaturen mit Hilfe des *Redlich-Kister*-Ansatzes (Gl. 3) die in Tab. 2 zusammengestellten *Redlich-Kister*-Parameter.

Daraus können mittels der Konstanten, $a^{(h)}$, $b^{(h)}$ und $c^{(h)}$ die molaren und die partiellen molaren Mischungswärmen und mit Hilfe der Parameter $a^{(s)}$, $b^{(s)}$ und $c^{(s)}$ die molaren und partiellen molaren Exzeßentropien berechnet werden.

EMK-Messungen in diesem System wurden von Lantratov und Alabyshev⁴ bei drei Konzentrationen $x_{PbCl_2} = 0,466$, $x_{PbCl_2} = 0,6625$ und $x_{PbCl_2} = 0,84$ und den Temperaturen 873 K und 963 K und von Markov et al.⁵ zwischen $x_{PbCl_2} = 0,3$ und $x_{PbCl_2} = 0,79$ bei 823 K und 873 K durchgeführt. Weiters wurden mittels kalorimetrischen Messungen von McCarty und Kleppa⁶ die molaren Mischungswärmen bei 938 K bestimmt.

1363

R. Vytlacil:

Der Vergleich der Meßwerte der vorliegenden Arbeit mit den Ergebnissen von *Lantratov* und *Alabyshev*⁴ sind nur bei 873 K möglich, da nur hier eine entsprechende Anzahl von Meßpunkten vorliegt.

Abb. 2. Partielle und integrale molare freie Exzeßenthalpien im System $PbCl_2$ —LiCl bei 873 K: ——— diese Arbeit G^E , G^E_1 , G^E_2 ; — — — Dijkhuis et al. G^E ; $\bigcirc \bigcirc \bigcirc$ Lantratov und Alabyshev; + + + Markov et al.; — — Gromakov $G_{LiCl}(2)$, Lumsden $G_{PbCl}(1)$

Abb. 2 zeigt die molaren freien Exzeßenthalpien und die partiellen molaren freien Exzeßenthalpien der Komponenten $PbCl_2(1)$ und LiCl(2) bei 873 K. Im Vergleich dazu sind die Meßwerte nach ⁴ angegeben. Die beiden bei $x_{PbCl_2} = 0,66$ und $x_{PbCl_2} = 0,84$ gemessenen partiellen molaren Exzeßenthalpien stimmen mit den Werten dieser Arbeit gut überein. Dagegen liegt der Meßpunkt bei $x_{PbCl_2} = 0,47$ um 200 J mol⁻¹ negativer. Der Versuch von *Dijkuis* et al.⁷ aus den drei Meßwerten die zugehörigen integralen Größen zu bestimmenn, führt zu der in Abb. 2 dargestellten strichlierten Kurve, die durch die Beziehung

$$G^{\rm E} = x_1 (1 - x_1) (1880 - 2303 x_1) / J \, {\rm mol}^{-1}$$

wiedergegeben werden kann. Sie liegt über dem gesamten Konzentrationsbereich negativer mit einer maximalen Abweichung von $460 \,\mathrm{J} \,\mathrm{mol}^{-1}$. Die von Markov, Delimarskii und Panchenko⁵ im Konzentrationsbereich $x_{PbCl_2} = 0,797$ und 0,304 ermittelten Meßwerte liegen ebenso im gesamten Bereich negativer. Die weite Streuung der Meßdaten bis zu -720 J mol⁻¹ läßt jedoch diese Werte kaum als realistisch erscheinen.

Aus der auf der LiCl-Seite liegenden Liquiduskurve des Zweistoffsystems LiCl—PbCl₂ bestimmte *Gromakov*⁸ die partiellen freien Exzeßenthalpien von Lithiumchlorid. Diese Werte können durch die Beziehung

$$R T \ln f_{
m LiCl} = 7\,536\,(1 - x_{
m LiCl})^2 / (2 - x_{
m LiCl})^2$$

wiedergegeben werden. Aus diesen Daten berechnete Lumsden⁹ die freie Exzeßenthalpie von $PbCl_2$

$$R T \ln f_{\text{PbCl}_2} = 3768 x_{\text{LiCl}}^2 / (2 - x_{\text{LiCl}})^2$$

Beide Kurven sind in Abb. 2 strichpunktiert eingezeichnet.

Mit Hilfe der so gewonnenen Redlich-Kister-Parameter (Tab. 2) wurden die partiellen molaren Mischungswärmen $H_i^{\rm E}$ und die integralen molaren Mischungswärmen $H^{\rm E}$, sowie die Exzeßentropien $S_i^{\rm E}$ und $S^{\rm E}$ berechnet.

In Abb. 3 sind die Mischungswärmen dieses Systems dargestellt. Sie sind in dem gemessenen Temperaturbereich endotherm, mit einem Maximalwert von 940 J mol⁻¹ und ebenso wie die zugehörigen partiellen molaren freien Exzeßenthalpien im Rahmen der Meßgenauigkeit symmetrisch in bezug auf $x_{PbCl_s} = 0.5$.

Die aus kalorimetrischen Untersuchungen von *McCarty* und *Kleppa*⁶ ermittelten Exzeßmischungswärmen liegen bis zu einem Molenbruch $x_{PbCl_2} = 0,6$ von Bleichlorid positiver als die Werte der vorliegenden Arbeit. Die maximale Abweichung beträgt 400 J mol⁻¹ und liegt bei $x_{PbCl_2} = 0,35$. Oberhalb dieser Konzentration stimmen die Werte mit den Daten der vorliegenden Arbeit sehr gut überein.

Gleichfalls symmetrisch und über den gesamten Konzentrationsbereich positiv sind die Exzeßentropien (strichlierte Kurve in Abb. 3). Der Maximalwert der integralen Größen beträgt 0,38 J mol⁻¹ K⁻¹.

Der Autor dankt den Fonds zur Förderung der wissenschaftlichen Forschung für die gewährte Unterstützung (Projekt Nr. 2246 Salzschmelzen).

Literatur

- ¹ R. Vytlacil, Ber. Bunsenges. physik. Chem., im Druck.
- ² R. Vytlacil und A. Neckel, Z. Phys. Chem N. F., im Druck.
- ³ O. Redlich und A. T. Kister, Industrial and Engineering Chemistry 40, 345 (1948).
- ⁴ M. F. Lantratov und A. F. Alabyshev, Zh. Prikl. Khim. 26, 263 (1953); J. Appl. Chem. USSR 26, 263 (1953).
- ⁵ B. F. Markov, I. K. Delimarskii und I. D. Panchenko, Zh. Fiz. Khim 28, 1987 (1954).
- ⁶ F. G. McCarty und O. J. Kleppa, J. Phys. Chem. 68, 3846 (1964).
- ⁷ C. Dijkhuis, R. Dijkhuis und G. J. Janz, Chem. Rev. 68, 253 (1968).
- ⁸ S. D. Gromakov und L. M. Gromakova, Zh. Fiz. Khim. 29, 745 (1955).
- ⁹ J. Lumsden, Thermodynamics of Molten Salt Mixtures, S. 194. London-New York: Academic Press. 1966.